相似就是一个矩阵在同一空间中不同基之间的变换,而合同是欧式空间中不同基的度量矩阵之间的变换,由于基决定度量矩阵 (度量矩阵是对称正定的,且任意一组标准正交基的度量矩阵是E),而度量矩阵唯一决定内积 ( (α,β)=X^TAY=αβ^T),且正交即内积为0 (即⊥三角形の合同条件を思い出す。 本時の学習内容「2つの三角形が相似になる条件を調べよう」を知る。 課題を考える。 ABCと線分EFがあります。 BC:EF=1:2のとき、 DEFとなる DEFをかきましょう。 対応する辺がすべて1:2となることを確認する。 DEFを合同条件と同じように、最初は辺に注目するよ。 「3組の辺の比がすべて等しい」 ならば、2つの三角形は相似だといえるんだ。 つまり、3組の辺が、 すべて同じ割合で拡大・縮小 されているなら、相似
15考研数学 矩阵的等价 相似 合同的联系及判定 文都考研网